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Abstract 

Subnormal operator on a Hilbert 

space and its spectra have been 

studied by many authors. The aim of  

this work is to present some ideas on 

how to obtain new results related to 

some spectral properties of the 

subnormal operator. To show that we 

have used a particular type of 

operators as an example, which is 

represented by certain infinite matrix. 

We have reached new results that 

have been presented in the form of 

theorems. 
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* Introduction  

In this work, an interesting 

type of operators is the focus of 

attention, which is today called 

subnormal. From the literature 

presented in [4,5,6,7], it is noted that, 

several authors have studied the 

spectra of the subnormal operator on 

Hilbert space. Surprisingly, to the 

authors' knowledge, we did not find a 

study that determines the spectra for 

a specific example of this type. Our 

main problem is devoted to answer 

this question:  

          How to apply some obtained 

results related to the spectra of a 

generalized difference operator for 

getting other results associated with 

spectra of the subnormal operator? 

          We  use some known methods 

to get the adjoint of operator and we 

consider three methods for 

classifying the spectrum. 

          The concept of subnormality 

has been introduced by Halmos [11] 

and has been defined by others, see 

[4],[5], [7]. In fact, as it was 

mentioned, the concept of 

subnormality is very close to concept 

of normality, where subnormal 
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operator arises from the concept of a 

normal operator. 

         The spectrum of some operators 

on certain spaces has been studied by 

many authors, see [1],[2], [9], [19].  

       Let   X be a complex infinite 

dimensional Banach space and B(X) 

be the set of all bounded linear 

operators on X into itself. If  T ∈

B(X), we use R(T) to denote the 

range of T. 

For a Banach space X we use 

X∗ to denote the dual space of X.  

If  T ∈ B(X), then T∗ ∈ B(X∗) is the 

adjoint operator of  T. 

        We begin by giving the 

definitions of some basic concepts, 

which are needed in this work. 

* Definition 1.1 

[10]. The Hahn space h is defined by 

h = {x = (xk)1
∞ ∶  lim

k→∞
xk =

0 and ∑ k|xk+1 − xk|∞
k=1 < ∞},  

with the norm  

‖xk‖h = ∑ k|∆xk| + sup
k

|xk|

∞

k=1

. 

      Or with a new norm, see [16, 

Proposition 2.1] as  ‖xk‖h =

∑ k|∆xk|∞
k=1 ,  where       

 ∆xk = |xk+1 − xk|. 

The space σ∞ of all absolutely 

summable sequences x = (xk)0
∞ is 

defined as 

 σ∞ = {x = (xk)0
∞ ∶

sup
n∈ℕ

1

n+1
|∑ xk

n
k=0 | < ∞}. 

The spaces h and σ∞ are Banach 

spaces and h∗ ≅ σ∞ [10,12]. 

* Theorem 1.1 

[10,12,13]. The matrix A = (ank) 

gives rise to abounded linear operator 

T ∈ B(h) if and only if 

1- lim
n→∞

ank = 0, for all k = 1,2, …, 

2- ∑ n|ank − an+1,k|∞
n=1  converges, 

for all  k = (1,2, … ),      

3- sup
k

1

k
∑ n|∑ (anv −k

v=1
∞
n=1

an+1,v)| < ∞. 

* Definition 1.2 

If   T ∈ B(X), with T  we 

associate the operator                                               

Tλ = T − λI, 

where I  is the identity mapping 

of X onto itself. If  Tλ has an inverse 

which is linear, we denote it by Tλ
−1 

and call it the resolvent operator of T. 

All of the points λ in the complex 

plane ℂ  are divided into two mutually 

exclusive and complementary sets: 

The resolvent set. ρ(T, X) =

{λ ∈ ℂ: T − λI is a bijection}, and 

The spectrum of  T : σ(T, X) =

{λ ∈ ℂ: T − λI is not invertible}, 

The spectrum  σ(T, X) is the 

complement of ρ(T, X) in the 

complex plane  ℂ, σ(T, X) can be 

analyzed into three disjoint sets as 

follows: 
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The point spectrum:  σp(T, X) = {λ ∈

ℂ: T − λI is not injective}, 

The continuous spectrum: 

     σc(T, X) = {λ ∈ ℂ: T −

λI is injective and R(T − λI)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

X, but  R(T − λI) ≠ X}, 

The residual spectrum: 

                 σr(T, X) = {λ ∈ ℂ: T −

λI is injective, but R(T − λI)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ X}, 

These three subspectra form  disjoint 

subdivisions 

       σ(T, X) = σp(T, X) ∪ σc(T, X) ∪

σr(T, X). 

      Three more subdivisions of the 

spectrum which are not necessarily 

disjoint can be defined, see Appel et 

al. [3]. 

     The approximate point spectrum 

of  T  

      σap(T, X) =

{λϵℂ: there exists a Weyl sequence for T −

λI}, 

where the sequence (xk) in X is 

called a Weyl sequence for  T if 

‖xk‖ = 1 and ‖Txk‖ → 0 , as κ →

∞. 

The defect spectrum of  T : 

σδ(T, X) = {λ ∈ ℂ: ℛ(λI − T) ≠ X} 

The compression spectrum : 

σco(T, X) = {λ ∈ ℂ: ℛ(λΙ − T)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ X}, 

The two subspectra  σap(T, X) and 

σδ(T, X) are not necessarily disjoint. 

As well as σap(T, X) and σco(T, X) 

are not necessarily disjoint. 

Whereσ(T, X) = σap(T, X) ∪

σδ(T, X), 

 σ(T, X) = σap(T, X) ∪ σco(T, X). 

Clearly, σp(T, X) ⊆ σap(T, X)  and  

σco(T, X) ⊆ σδ(T, X). 

Sinceσ(T, X) = σp(T, X) ∪

σc(T, X) ∪ σr(T, X), so, we 

haveσr(T, X) = σco(T, X) ∖ σp(T, X), 

 σr(T, X) = σ(T, X) ∖ [σp(T, X) ∪

σco(T, X)]. 

Also, by proposition in [3] we 

have the following relations:     

σ(T∗, X∗) = σ(T, X),  

σap(T∗, X∗) = σδ(T, X),                                              

σδ(Τ∗, Χ∗) = σap(Τ, X), 

σp(T∗, X∗) = σco(T, X), 

σ(T, X) = σap(T, X) ∪ σp(T∗, X∗) =

σp(T, X) ∪ σap(T∗, X∗).                            

      There are another classification of 

the spectrum, a linear operator with 

domain and range in a normed space 

X is classified into   I, II or III ,see 

Taylor and Halberg [17-18] to get 

details. There are some relation                                  

σp(T, X) = I3(T, X) ∪ II3(T, X) ∪

III3(T, X), 

σr(T, X) = III1(T, X) ∪ III2(T, X)   

σc(T, X) = II2(T, X)   

σap(T, X) = σ(T, X)╲III₁(T, X),                                               

σδ(T, X) =  σ(T, X)╲I₃(T, X) 

       Now, we present some concepts, 

which are associated with a 

subnormal operator and its normal 

extension. 
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* Definition 1.3. 

          An operator S acting on a 

Hilbert space  H  is said to be 

subnormal if there is a Hilbert space 

K containing H and a normal operator 

N on K such that NH ⊆ H and 

 S = N ∤H , and N is called a normal 

extension of S and S is the restriction 

of  N. 

         Equivalently, S is subnormal on 

a subspace H of  K, if the normal 

operator N, acting on K leaves H 

invariant, and S is the restriction of N 

to H. 

        An example of a subnormal 

operator is the unilateral shift, such 

that, the bilateral shift is a normal 

extension. If U is a bilateral shift 

relative to the spaces {Kn} and 

 H = K0⨁K1⨁ ⋯   , then H is 

invariant for U and S = U ∤H is a 

unilateral shift [6]. 

         In particular, every normal 

operator is subnormal [6]. 

         The more so, as the behavior of 

some subnormal operators is rather 

startlingly different from that of the 

normal operators. 

* Definition 1.4. 

An operator S is called 

quasinormal if S and S∗S commute. 

Every normal operator is quasinormal 

but the converse is obviously false 

[5]. 

Every quasinormal operator is 

subnormal [5], [6].  

* Theorem 1.2.  

         If S ∈ B(H), then the following 

statements are equivalent∶ 

(a) S is subnormal, 

        (b) S has a quasinormal 

extension.     

* 𝐏𝐫𝐨𝐨𝐟  

 If S is subnormal, then S has a 

normal extension N , it follows that N 

is a quasinormal  extension for S , 

because N(N∗N) = (NN∗)N =

(N∗N)N. 

 Conversely, if (b) holds, then 

S is subnormal. Thus (a) and (b) are 

equivalent. 

           Also, in 1950 Paul Halmos 

[11] introduced a larger class of 

operators, which are called 

hyponormal. 

* Definition 1.5. 

 An operator A is hyponormal 

if  A∗A ≥ AA∗. 

* Theorem 1.3. 

Every subnormal operator is 

hyponormal. 

* Proof 

This theorem has been proved 

in [5], [6], but we can prove it with 

other way:   If S (on H ) is subnormal, 

with normal extension N (on K ), P is 

projection from K onto H,if f ∈ H , 

then ‖S∗f‖ = ‖PN∗f‖ ≤ ‖N∗f‖ =

‖Nf‖ = ‖Sf‖ , it is equivalent to the 

operator inequality SS∗ ≤ S∗S. 
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      Indeed, the results in this paper, 

generally speaking, are concerned 

with the  relationships that exist 

between the spectrum of a subnormal 

operator and that  of its normal 

extension. 

* Theorem 1.4 

 [8] Suppose that T is a normal 

operator and that λ is a complex 

number. Then λ is not an eigenvalue 

for T  if and only if  (T − λI)(H)  is 

dense in  H. 

* Theorem 1.5 

 [8] Let T ∶ H → H  be a 

normal operator on a Hilbert space, 

then σr(T) = ∅ .  

* Theorem 1.6 

 [7] If S is a subnormal 

operator and N its minimal normal 

extension, then  σ(N) ⊆ σ(S), 

σp(S) ⊆ σP(N)  and σap(S) ⊆ σ(N).  

* Theorem 1.7 

 [6] If A  is a hyponormal 

operator, then σ(A) = σr(A). 

* Theorem 1.8 

 [6] If A  is a hyponormal 

operator and λ is an isolated point of 

σ(A) 

,then λ ∈ σP(A). 

* Theorem 1.9 

[6] If A  is a hyponormal operator and  

λ ∈ σP(A) , then  ker (A − λ ) 

reduces  A. 

*  Main Results 

        The principal part is devoted to 

description of certain operator as 

example of  a subnormal operator and 

determine its spectrum and fine 

spectrum. 

We will introduce the spectra 

analysis of a generalized difference 

operator B(a) on the Hahn sequence 

space  h. 

The generalized difference 

operator B(a): μ → μ is defined on 

the Banach sequence space μ as:   

 B(a)x: =

(ax₀, ax₁, ax₂, … ),  x = (xk)k=0
∞  ∈

μ,                           

where a ∈ ℝ,  a ≠ 0.    

This operator  can be 

represented by a band matrix  as  

B(a) = [

a 0 0 ⋯
0 a 0 ⋯
0 0 a ⋯
⋮ ⋮ ⋮ ⋱

]   . 

 It is clear that, this operator is 

normal, so it is subnormal. 

 Now, we will present all 

results of this work in  the following 

theorems.  The first theorem shows 

the bounded linearity of the operator 

B(a) on  h. 

* Theorem 2.1 

The operator B(a): h → h is a 

bounded linear operator. 

* Proof 

The linearity of B(a) is trivial 

and so is omitted here for brevity. To 

show the operator B(a) is a bounded 

linear transformation on h into itself, 

it is enough to prove that B(a) 
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satisfies the three conditions given by 

Theorem 1.1. 

  Obviously, the matrix B(a) = (bnk) 

satisfies 

 lim
n→∞

bnk = 0, k = 1,2,3, …. 

Also, let 

 Rk = ∑ n|bnk −∞
n=1

bn+1,k| ,   k = 1,2,3, …. 

So 

 R1 =  |a|,             

 R2 = |−a| + 2|a| = 3|a|, 

and 

R₃ =  2| − a| + 3|a| = 5|a|. 

Then, in general, we obtain 

Rk = ∑ n|bnk − bn+1,k|∞
n=1 = (k −

1)|a| + k|a|,  

which is convergent, for each fixed 

k ∈ ℕ. 

Additionally, let 

 Sk = ∑ n|∑ (bnv −k
v=1

∞
n=1

bn+1,v)| ,   k = 1,2,3, ⋯. 

So 

 S₁ = |a|, 

          S₂ = 2|a|     

and 

         S₃ = 3|a|    

Precisely, we have the following 

cases: 

For n = 1, 

|∑(b1v − b2v)

k

v=1

|  = |0| = 0.  

For n = k > 1, 

 |∑ (bkv − bk+1,v)k
v=1 | =  |a|.    

 

For n = k + 1 > 1, 

  |∑ (bk+1,v − bk+2,v)k
v=1 | =  |0| = 0 

But, for n ≠ 1, k, k + 1, we have 

 |∑ (bnv − bn+1,v)k
v=1 | =

 |0| = 0.                                    

Then, for  k ≥ 2 

 Sk = ∑ n|∑ (bnv −k
v=1

∞
n=1

bn+1,v)| =  |0| + k|a| + (k + 1)|0|                                                         

=  k|a|. 

Thus 

  sup
k≥2

1

k
∑ n|∑ (bnv − bn+1,v)k

v=1 |∞
n=1  

= sup
k≥2

[|a|] = |a| < ∞. 

So, the operator B(a) is 

bounded. 

This completes the proof.  

* Theorem 2.2 

σ(B(a), h) = {λ ∈ ℂ: |λ − a| ≤ 0}. 

Proof. The proof is similar to that in 

[9].  

* Theorem 2.3 

The operator B(a) has 

eigenvalues in h, and   σp(B(a), h) =

{λ ∈ ℂ: λ = a} 

* Proof 

Suppose B(a)x = λx for  x = (x =

(xk)k=1
∞ ∈ h, x ≠ θ. Then by solving 

the system of equations 

           ax₁ =  λx₁ 

 ax₂ =  λx₂ 

 ax₃ =  λx₃ 

        ⋮ 

 axk+1  =  λxk+1 

        ⋮ 

we obtain 
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(a − λ)xk = 0, k ≥ 1. 

If  λ = a, we have x ≠ θ for all , k ≥

1. But, if  λ ≠ a, we would have x =

θ for all k ≥ 1. It follows that λ = a  

is an eigenvalue of  B(a) , therefore  

σp(B(a), h) = {λ ∈ ℂ: λ = a}. 

By Theorems 1.9 and 2.3, we 

can conclude this result. 

* Corollary 2.1 

 ker(B(a) − aI) reduces  B(a). 

* Proof  

Since σp(B(a), h) = {λ ∈

ℂ: λ = a}, then ker(B(a) − aI) ≠

{0}, which leads to 

 ker(B(a) − aI) reduces  B(a). 

Also, we have the following results. 

* Corollary 2.2 

σp(B(a), h) = ∂(σ(B(a), h)). 

* Corollary 2.3 

 If  λ ∉ σp(B(a), h), then λ is not 

isolated point in σ(B(a), h). 

* Theorem 2.4 

 σr(B(a), h) = ∅. 

* Proof 

The proof is trivial by Theorem 

1.5.  

As a result of the above, since 

σ(B(a), h) ≠ σr(B(a), h), this shows 

that the converse of Theorem 1.7 is 

not necessarily true. 

The following lemma is stated here in 

order to have a convenient reference 

for the proof to come.  

* Lemma 2.1 

If T is a bounded linear 

operator on a Banach space X into 

itself, then                        

σr(T, X) = σp(T∗, X∗)\σp(T, X). 

* Theorem 2.5 

The point spectrum of the 

adjoint operator B(a)∗ on h∗ is given 

by                                      σp(B(a)∗, h∗) =

{λ ∈ ℂ: λ = a}. 

* Proof 

 By Lemma 2.1, we have 

 σp(B(a)∗, h∗) = σp(B(a), h) ∪

σr(B(a), h) 

 = {λ ∈ ℂ: λ = a} = {a}. 

      Also, we can get the proof if we 

suppose that  B(a)∗f = λf  for  

f = (f₁, f₂, f₃, … ) ≠ θ in h∗ ≅ σ∞ and 

then solve the system of equations 

          (r − λ)f₁ =  0f₂ 

 (r − λ)f₂ =  0f₃ 

   ⋮ 

 (r − λ)fk  =  0fk+1 

Then we continue with the same steps 

in the proof of Theorem 2.3. 

Now, we derive the result concerning 

the continuous spectrum B(a) on h. 

 Theorem 2.6. The continuous 

spectrum of the operator B(a) on h is 

                     σc(B(a), h) =

{λ ∈ ℂ: |λ − a| ≤ 0}\{a} 

                     = {λ ∈ ℂ: |λ − a| < 0}. 

Proof. Since σ(B(a), h) is the 

union of the disjoint sets σp(B(a), h), 

σr(B(a), h) and σc(B(a), h), then 

Theorems 2.2, 2.3 and 2.4 imply 

σc(B(a), h) = {λ ∈ ℂ: |λ − a| < 0}.  
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Corollary 2.4. If λ ≠ a and 

|λ − a| < 0} for all  λ ∈ ℂ , then 

(B(a) − λI)h̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = h. 

Proof We can immediately get the 

proof from Theorems 1.4, 2.3 and 

2.6. 

      Indeed, the following results can 

be obtained by the preceding 

relations : 

I₃(B(a), h) ∪ II₃(B(a), h) ∪

III₃(B(a), h) = {a}, 

Also 

II₂(B(a), h) = {λ ∈ ℂ: |λ − a| < 0}, 

Moreover 

III₁(B(a), h) = III₂(B(a), h) = ∅.    

* Theorem 2.7 

The following statements hold: 

(i) σap(B(a), h) = σ(B(a), h)\

III₁(B(a), h) = {λ ∈ ℂ: |λ − a| ≤ 0},  

(ii) σco(B(a), h) =

σp(B(a)∗, h∗) = {a}, 

(iii)   σδ(B(a), h) = σ(B(a), h)\

I₃(B(a), h). 

 The proof is easy. 

* Recommendation 

 After all these new results 

related to the operator B(a), that we 

obtained in this work and which led 

us to new results regarding the 

subnormal operator in general, we 

propose to devise an operator, which 

is represented by certain infinite 

lower or upper triangular double-

band matrix as an example of the 

subnormal operator and study its fine 

spectrum on some spaces in several 

ways  to reach more accurate results 

that can be applied in many 

situations.  

* Conclusion 

       This work has aimed to clarify 

some general properties of the 

subnormal operator and derive 

corresponding results of a 

generalized difference operator as an 

example of this type of the operators 

specifically.   
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